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It has recently been shown that quantum measurement is not always useful for
discrimination among quantum states (K. Hunter (2003).Physical Review A68, 012306).
This paper provides another proof of the necessary and sufficient condition for
quantum measurement not to be useful and examines the condition by considering
quantum measurement which discriminates between two spin-1/2 states in thermal
equilibrium.
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1. INTRODUCTION

One of the most important problems in a quantum communication
theory is to obtain an optimum quantum measurement that discriminates among
n quantum states ˆρ1, ρ̂2, . . . , ρ̂n with minimum error probability (Helstrom,
1976; Nielsen and chuang, 2000). Such an optimum measurement is applied
for a receiver of a quantum-state signal. Quantum measurement is mathemati-
cally described by positive operator-valued measureX̂1, X̂2, . . . , X̂n (Helstrom,
1976; Holevo, 1982) which satisfŷXk ≥ 0 and6n

k=1X̂k = Î, where Î stands
for an identity operator. The conditional probabilityP( j |k) that the quantum
state is inferred to be ˆρ j if ρ̂k is true is given byP( j |k) = Tr[ X̂ j ρ̂k]. When
the prior probability of the quantum state ˆρk is πk, whereπk ≥ 0 and6n

k=1
πk = 1, the average probability of correct detection is given by (Helstrom,
1976)

PD =
n∑

k=1

P(k|k)πk =
n∑

k=1

πkTr[ X̂kρ̂k] (1)

and the average probability of error isPE = 1− PD.
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In the case of discrimination between two quantum states, the average prob-
ability of correct detection becomes

PD = π1+ Tr[(π2ρ̂2− π1ρ̂1)X̂2]

= π2+ Tr[(π1ρ̂1− π2ρ̂2)X̂1]. (2)

Here, letλ j be the eigenvalue of the Hermitian operatorπ1ρ̂1− π2ρ̂2 and let
|λ j 〉 be the corresponding eigenstate. Then the maximum value of the average
probability PD of correct detection and the positive operator-valued measure,X̂1

and X̂2, describing the optimum quantum measurement are given by (Helstrom,
1976),

Pmax
D = π2+

∑
λ j > 0

λ j , X̂1 =
∑
λ j > 0

|λ j 〉〈λ j |, X̂2 = 1̂− X̂1. (3)

In general, optimum quantum measurement that discriminates amongn quan-
tum states ˆρ1, ρ̂2, . . . , ρ̂n with prior probabilitiesπ1, π2, . . . , πn is described by
positive operator-valued measureX̂1, X̂2, . . . , X̂n which satisfy the following con-
ditions (Helstrom, 1976):(

n∑
k=1

πk X̂kρ̂ − π j ρ̂ j

)
X̂ j = 0 ( j = 1, 2,. . . , n), (4)

and

n∑
k=1

πk X̂kρ̂k − π j ρ̂ j ≥ 0 ( j = 1, 2,. . . , n). (5)

It is easy to check that the positive operator-valued measureX̂1 and X̂2 given by
Eq. (3) satisfy these conditions. It is very difficult to obtain the positive operator-
valued measure which satisfies Eqs. (4) and (5). The exact and analytic expression
of the optimum positive operator-valued measure can be obtained only when quan-
tum states have some symmetric properties (Banet al., 1997; Bernett, 2001; Eldar
and Forney, 2001).

It has recently been shown that quantum measurement is not always useful for
discrimination among quantum states (Hunter, 2003). In this paper, we give another
proof of the necessary and sufficient condition for quantum measurement not to
be useful and we investigate optimum quantum measurement that discriminates
between two spin-1/2 states in thermal equilibrium. We find that if the strength
of the thermal noise is greater than the value determined by the quantum states
and prior probabilities, the quantum measurement is not useful and the guessing
strategy becomes better. The meaning of the result is also considered.
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2. CONDITION FOR QUANTUM MEASUREMENT NOT TO BE USEFUL

Recently it has been shown that quantum measurement is not always useful for
discrimination among quantum states (Hunter, 2003). The necessary and sufficient
condition under that quantum measurement becomes unuseful for discrimination
among quantum states has been derived from Eqs. (4) and (5). The condition is
given by

πmρ̂m − πkρ̂k ≥ 0 (k = 1, 2,. . . , n) (6)

for some valuem. When this condition is satisfied, the positive operator-valued
measurement that describes the optimum quantum measurement becomes

X̂m = 1̂, X̂k = 0 (k 6= m). (7)

It is easy to see from Eq. (6) that the quantum state ˆρm is the most likely state,
namely,πm ≥ πk (for all k). Hence if the inequality (6) is satisfied, the optimum
strategy for the quantum state discrimination is to guess the most likely state.

The necessary and sufficient condition given by Eq. (6) can be derived directly
from the average probability of correct detectionPD given by Eq. (1). Our task
is to maximize the probabilityPD by choosingX̂1, X̂2, . . . , X̂n appropriately.
First we assume that the condition given by Eq. (6) is satisfied. Using the relation∑n

k=1 X̂k = 1̂, we can rewrite the detection probabilityPD as

PD = πm +
n∑

k=1
(k 6=m)

Tr[ X̂k(πkρ̂k − πmρ̂m)]. (8)

Sinceπmρ̂m ≥ πkρ̂k for all k, the every term in the summation on the right-
hand side is negative or zero. Then to maximize the detection probabilityPD, we
should set the positive operator-valued measure as given in Eq. (7). In this case, the
maximum value of the probabilityPD is equal to the maximum prior probabilityπm.
Therefore the condition given by Eq. (6) is sufficient for the quantum measurement
not to be useful for state discrimination.

Next we assume that the positive operator-valued measure given by Eq. (7)
maximizes the average probabilityPD of correct detection. Then the follow-
ing inequality should hold for any other positive operator-valued measureX̂1,
X̂2, . . . , X̂n,

Pmax
D = πm ≥ πm +

n∑
k=1

(k 6=m)

Tr[ X̂k(πkρ̂k − πmρ̂m)], (9)

or equivalently
n∑

k=1
(k 6=m)

Tr[ X̂k(πkρ̂k − πmρ̂m)] ≤ 0. (10)
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Suppose that the inequalityπkρ̂k ≤ πmρ̂m is violated for some valuek = m′. In this
case, when we set̂Xk = 0 (k 6= m, m′), the average probability of correct detection
becomes

PD = πm + Tr[(πm′ ρ̂m′ − πmρ̂m)X̂m′ ], (11)

with X̂m + X̂m′ = 1̂. Then ifX̂m′ is the projection operator onto the subspace corre-
sponding to the positive eigenvalues of the operatorπm′ ρ̂m′ − πmρ̂m, the inequality
PD > πm holds, where the operatorπm′ ρ̂m′ − πmρ̂m has positive eigenvalues by
the assumption. This result is the contradiction to the fact thatπm is the maximum
value of the average probabilityPD of correct detection. Thus the condition given
by Eq. (6) is necessary for the quantum measurement not to be useful for state
discrimination.

In the case of the discrimination between two quantum states, the necessary
and sufficient condition means

π1ρ̂1− π2ρ̂2 ≥ 0 or π2ρ̂2− π1ρ̂1 ≥ 0. (12)

It is seen from Eq. (2) that the former yieldŝX2 = 0 and the latterX̂1 = 0
to maximize the average probability of correct detection in the quantum state
discrimination.

3. DISCRIMINATION BETWEEN THERMAL SPIN-1 /2 STATES

We suppose that two quantum states to be discriminated by quantum mea-
surement are spin-1/2 states in thermal equilibrium, which are given by density
matrices,

ρ̂1 = 1

2
1̂+ 1

2
(1− 2 f )σ̂z, (13)

ρ̂2 = 1

2
1̂+ 1

2
(1− 2 f )[σ̂z cosθ + σ̂x sinθ ], (14)

whereσ̂x, σ̂y, andσ̂z are the Pauli spin matrices andÎ is an identity matrix. In these
equations, the parameterf represents the strength of the thermal noise, satisfying
the inequality 0≤ f ≤ 1/2. In the absence of the thermal noise, the density matrix
ρ̂1 describes the eigenstate of ˆσz with eigenvalue 1 and the density matrix ˆρ2

describes the spin state, the direction of which is inclined by angleθ from the spin
state ˆρ1. The purity and the von Neumann entropy of the quantum state ˆρ j ( j = 1, 2)
are given byF = Tr(ρ̂ j )2 = 1− 2 f (1− f ) andS(ρ̂ j ) = −(1− f ) log(1− f )−
f log f .

When the prior probability of the quantum state ˆρ j is π j , we need the eigen-
value and eigenstates of the Hermitian operatorπ2ρ̂2− π1ρ̂1 to obtain the optimum
quantum measurement which attains the maximum value of the average proba-
bility of correct detection. When the thermal noisef and the prior probability
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πk(k = 0, 1) satisfy the inequality

f <
1

2

[
1− |π1− π2|√

1− 4π1π2 cos2(θ/2)

]
, (15)

the maximum value of the average probability of correct detection becomes

Pmax
D = 1

2
[1+ (1− 2 f )

√
1− 4π1π2 cos2(θ/2)], (16)

and the positive operator-valued measure which describes the optimum measure-
ment is given by

X̂1 = 1

2
1̂+ (π1− π2 cosθ )σ̂z− (π2 sinθ )σ̂x

2
√

1− 4π1π2 cos2(θ/2)
, (17)

X̂2 = 1

2
1̂− (π1− π2 cosθ )σ̂z− (π2 sinθ )σ̂x

2
√

1− 4π1π2 cos2(θ/2)
. (18)

On the other hand, when the following inequality holds,

f ≥ 1

2

[
1− |π1− π2|√

1− 4π1π2 cos2(θ/2)

]
, (19)

the maximum value of the average probability of correct detection and the optimum
positive operator-valued measure become

Pmax
D = max[π1, π2], (20)

and

X̂1 = θ (π1− π2)1̂, X̂2 = θ (π2− π1)1̂, (21)

whereθ (x) is a step function defined asθ (x) = 1 for x ≥ 0 andθ (x) = 0 for
x < 0. This result means that if the thermal noise is large, we should always
infer the quantum state which has the larger prior probability, regardless of the
measurement outcome. In this case, the quantum measurement is not useful for
the discrimination between the two quantum states.

We now investigate the meaning of the condition given by Eq. (15) or (19).
We denote as1P the difference between the correct detection probability and the
error probability in the quantum measurement described by Eqs. (17) and (18).
Then1P is given by

1P = (1− 2 f )
√

1− 4π1π1 cos2(θ/2). (22)

Furthermore, the difference1Q between the correct detection probability and the
error probability in the quantum measurement described by Eq. (21) becomes

1Q = |π1− π2|. (23)
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Thus the condition given by Eq. (15) is equivalent to the inequality,

1P > 1Q. (24)

This result means the trivial fact that we should perform the quantum measurement
which yields the smaller error probability.

When we perform the quantum measurement described by Eqs. (17) and
(18), the posterior probabilityP( j |k) that the quantum state was ˆρ j if the quantum
measurement yields the outcomek is calculated by the Bayes law, which is given
by

P(1|1) = π1
1+ A1

1+ B
, P(1|2)= π1

1− A1

1+ B
, (25)

P(2|1) = π2
1+ A2

1+ B
, P(2|2)= π2

1+ A2

1− B
, (26)

where the parametersA1, A2 andB are given by

A1 = (1− 2 f )
π1− π2 cosθ√

1− 4π1π2 cos2(θ/2)
, (27)

A2 = (1− 2 f )
π2− π1 cosθ√

1− 4π1π2 cos2(θ/2)
, (28)

B = (1− 2 f )
π1− π2√

1− 4π1π2 cos2(θ/2)
, (29)

which satisfy the relationπ1A1− π2A2 = B. The condition that the most likely
state before the quantum measurement is also the most likely state after the quantum
measurement is represented by

π j ≥ πk → P( j |l ) ≥ P(k|l ) (l = 1, 2). (30)

It is found that this condition is equivalent to Eq. (19). Thus, the condition that
quantum measurement is not useful for the discrimination between the quantum
states ˆρ1 andρ̂2 is equivalent to the condition that the most likely state remains
most likely after the quantum measurement.

The quantum states ˆρ1 and ρ̂2 considered in this section also appears in
the output port of the quantum depolarizing channel+̂ when the input states
are |ψ1〉 = |0〉 and |ψ2〉 = |θ〉 = cos(θ/2)|0〉 + sin(θ/2)|1〉, where the quantum
depolarizing channel̂+ is given by

+̂ρ̂ = (1− p)ρ̂ + 1

2
p1̂ (0≤ p ≤ 1). (31)

The parameterp is related tof in Eqs. (13) and (14) byp = 2 f .
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4. CONCLUDING REMARKS

In this note, we have considered the quantum measurement which discrimi-
nates among quantum states. We have provided another proof of the necessary and
sufficient condition under that quantum measurement is not useful for quantum-
state discrimination, which was initiated by Hunter (Hunter, 2003). Using the two
spin-1/2 states in thermal equilibrium, we have examined the condition.

REFERENCES

Ban, M., Kurokawa, K., Momose, R., and Hirota, O. (1997). Optimum measurements for dicrimination
among symmetric quantum states and parameter estimation.International Journal of Theoritical
Physics36, 1269–1288.

Bernett, S. (2001). Minimum-error discrimination between multiply symmetric states.Physical Review
A 64, 030303(R).

Eldar, Y. and Forney, G., Jr. (2001). On quantum detection and the square-root measurement.IEEE
Transactions on Information TheoryIT-47, 858–872.

Helstrom, C. (1976). Quantum Detection and Estimation Theory, Academic Press, New York.
Holevo, A. (1982). Probabilistic and Statistical Aspects of Quantum Theory, North-Holland,

Amsterdam.
Hunter, K. (2003). Measurement does not always aid state discrimination.Physical Review A68,

012306.
Nielsen, M. and Chuang, I. (2000). Quantum Computation and Quantum Information, Cambridge

University Press, Cambridge, UK.


