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It has recently been shown that quantum measurement is not always useful for
discrimination among quantum states (K. Hunter (20PBysical Review 88, 012306).

This paper provides another proof of the necessary and sufficient condition for

guantum measurement not to be useful and examines the condition by considering
guantum measurement which discriminates between two spin-1/2 states in thermal
equilibrium.
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1. INTRODUCTION

One of the most important problems in a quantum communication
theory is to obtain an optimum quantum measurement that discriminates among
n quantum stateps; 62, ..., pn With minimum error probability (Helstrom,
1976; Nielsen and chuang, 2000). Such an optimum measurement is applied
for a receiver of a quantum-state signal. Quantum measurement is mathemati-
cally described by positive operator-valued mea@ﬂ{exz, oy Xn (Helstrom,

1976; Holevo, 1982) which satlsf)xk >0 and £_ 1Xk _T Wherel stands

for an identity operator. The conditional probabiliB(]j|k) that the quantum
state is inferred to be;”if py is true is given byP(j|k) = Tr[)Zj,ék]. When

the prior probability of the quantum stajg iS m, wherew, > 0 and £_,

mx = 1, the average probability of correct detection is given by (Helstrom,
1976)

n n
Po =Y PKKmk =) mTr[Xcpu] (1)
k=1 k=1
and the average probability of errorils = 1 — Pp.
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In the case of discrimination between two quantum states, the average prob-
ability of correct detection becomes

Pp = 71 + Tr{(m2p2 — m1p1) Xa]
= 712 4 Tr{(1f1 — m252) X1]. 2

Here, leti; be the eigenvalue of the Hermitian operatqip, — w20, and let

|A;) be the corresponding eigenstate. Then the maximum value of the average
probability Pp of correct detection and the positive operator-valued mea3ire,

and X, describing the optimum quantum measurement are given by (Helstrom,
1976),

PO™=mo+ > A, Xa= Y Ryl Xe=1-X. (3

Aj>0 x>0

In general, optimum quantum measurement that discriminates amopran-
tum statesos, p2, . .., pn With prior probabilitiesry, 7o, . . ., 7, is described by
positive operator-valued measte, Xz, . .., X, which satisfy the following con-
ditions (Helstrom, 1976):

n
(anxkﬁ—mﬁj> X;j=0 (j=1,2,...,n), (4)
k=1
and
n ~
Y mXep—mpp =0 (j=1,2,...,n). (5)
k=1

It is easy to check that the positive operator-valued measy@nd X, given by

Eq. (3) satisfy these conditions. It is very difficult to obtain the positive operator-
valued measure which satisfies Egs. (4) and (5). The exact and analytic expression
of the optimum positive operator-valued measure can be obtained only when quan-
tum states have some symmetric properties @&aal, 1997; Bernett, 2001; Eldar

and Forney, 2001).

It has recently been shown that quantum measurement is not always useful for
discrimination among quantum states (Hunter, 2003). In this paper, we give another
proof of the necessary and sufficient condition for quantum measurement not to
be useful and we investigate optimum quantum measurement that discriminates
between two spin-1/2 states in thermal equilibrium. We find that if the strength
of the thermal noise is greater than the value determined by the quantum states
and prior probabilities, the quantum measurement is not useful and the guessing
strategy becomes better. The meaning of the result is also considered.
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2. CONDITION FOR QUANTUM MEASUREMENT NOT TO BE USEFUL

Recently it has been shown that quantum measurementis not always useful for
discrimination among quantum states (Hunter, 2003). The necessary and sufficient
condition under that quantum measurement becomes unuseful for discrimination
among quantum states has been derived from Eqgs. (4) and (5). The condition is
given by

Tmpm —7kpk =0 k=1,2,...,n) (6)

for some valuem. When this condition is satisfied, the positive operator-valued
measurement that describes the optimum quantum measurement becomes

Xm=1, Xe=0  (k#m). (7)

It is easy to see from Eq. (6) that the quantum statds the most likely state,

namely,r, > mx (for all k). Hence if the inequality (6) is satisfied, the optimum

strategy for the quantum state discrimination is to guess the most likely state.
The necessary and sufficient condition given by Eq. (6) can be derived directly

from the average probability of correct detectiBp given by Eq. (1). Our task

is to maximize the probabilitPy by choosingXi, X», ..., X, appropriately.

First we assume that the condition given by Eq. (6) is satlsfled Using the relation

> r_1 Xk = 1, we can rewrite the detection probabilies as

Po = 7Tm + Z T Xi(mich — Tmpm)]- ®)
(km)

Since mmpm > mkpx for all k, the every term in the summation on the right-
hand side is negative or zero. Then to maximize the detection probabilitywe
should set the positive operator-valued measure as given in Eq. (7). In this case, the
maximum value of the probability is equal to the maximum prior probability,.
Therefore the condition given by Eq. (6) is sufficient for the quantum measurement
not to be useful for state discrimination.

Next we assume that the positive operator-valued measure given by Eq. (7)
maximizes the average probabili§y of correct detection. Then the follow-
ing inequality should hold for any other positive operator-valued meaXyre
Xo, ooy Xny

PO = 7tm > 7tm + Z T X(mpk — Tmdm)], ©)

(k#m)

or equivalently

Z Tr[Xk(mpx — Tmpm)] < O. (10)

(k#m)
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Suppose thatthe inequality ok < 7mpom is violated for some value = m'. Inthis
case, whenwe s&, = 0 (k # m, m’), the average probability of correct detection
becomes

Po = tm + Tr[(7tw o — ﬂmlam))A(m’]a (11)

with Xm + X = 1. ThenifX,y is the projection operator onto the subspace corre-
sponding to the positive eigenvalues of the operatpby — 7mom, the inequality
Pp > 7, holds, where the operataty pry — 7mpPm has positive eigenvalues by
the assumption. This result is the contradiction to the factthas the maximum
value of the average probabili§y of correct detection. Thus the condition given
by Eq. (6) is necessary for the quantum measurement not to be useful for state
discrimination.

In the case of the discrimination between two quantum states, the necessary
and sufficient condition means

711,61 — 7'[2,62 >0 or ﬂzﬁz — 711,51 > 0. (12)

It is seen from Eq. (2) that the former yieldé, = 0 and the latterX; = 0
to maximize the average probability of correct detection in the quantum state
discrimination.

3. DISCRIMINATION BETWEEN THERMAL SPIN-1 /2 STATES

We suppose that two quantum states to be discriminated by quantum mea-
surement are spin/2 states in thermal equilibrium, which are given by density
matrices,

1.1 .

pr=31+50-203, (13)
L 1.1 . I

P = 514 51~ 21)[5; cos + 5y sind], (14)

whereoy, 6y, ando? are the Pauli spin matrices ahig an identity matrix. In these
equations, the parametémrepresents the strength of the thermal noise, satisfying
the inequality O< f < 1/2.Inthe absence of the thermal noise, the density matrix
01 describes the eigenstate @f with eigenvalue 1 and the density matrx ~
describes the spin state, the direction of which is inclined by anfylem the spin
statgo. The purity and the von Neumann entropy of the quantum gidfe= 1, 2)
aregivenbyF = Tr(5j)> =1—2f(1— f)andS(p;) = —(1 — f) log(1 - f) —

f log f.

When the prior probability of the quantum staigis rj, we need the eigen-
value and eigenstates of the Hermitian operai@r — 710, to obtain the optimum
quantum measurement which attains the maximum value of the average proba-
bility of correct detection. When the thermal noi$eand the prior probability
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mx(k = 0, 1) satisfy the inequality

1 |7y — 72|
f<Z|1- , 15
S 2 [ V1— 4y, co§(9/2)] 13)

the maximum value of the average probability of correct detection becomes

pmax _ %[1 + (1= 2f)/1— 4 c02(6/2))], (16)

and the positive operator-valued measure which describes the optimum measure-
ment is given by

- 1. (w1 — mp €c0SH)G, — (72 SiNB)by

X1= -1+ , 17

T2 2\/1— dnym; c02(0/2) an

)22 _ }i— (7r1 — 72 €c0S0)6; — (2 SInQ)GX‘ (18)
2 2/1— 4y, co2(6/2)

On the other hand, when the following inequality holds,
fs g |1 — 72 7
2 V1—4mm; cog(9/2)

the maximum value of the average probability of correct detection and the optimum
positive operator-valued measure become

PJ'® = maxfry, 2], (20)

(19)

and
X1=0(m — ), Xz =0(12—m)i, (21)

where6d(x) is a step function defined a¥x) = 1 for x > 0 andé#(x) = 0 for
x < 0. This result means that if the thermal noise is large, we should always
infer the quantum state which has the larger prior probability, regardless of the
measurement outcome. In this case, the quantum measurement is not useful for
the discrimination between the two quantum states.

We now investigate the meaning of the condition given by Eq. (15) or (19).
We denote aa P the difference between the correct detection probability and the
error probability in the quantum measurement described by Egs. (17) and (18).
ThenAP is given by

AP = (1—2f)y/1— 4mymy coL(6/2). (22)

Furthermore, the differenc& Q between the correct detection probability and the
error probability in the quantum measurement described by Eqg. (21) becomes

AQ = |my — ma. (23)
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Thus the condition given by Eq. (15) is equivalent to the inequality,
AP > AQ. (24)

This result means the trivial fact that we should perform the quantum measurement
which yields the smaller error probability.

When we perform the quantum measurement described by Egs. (17) and
(18), the posterior probabiliti ( j |k) that the quantum state wag if the quantum
measurement yields the outcotes calculated by the Bayes law, which is given

by

1+A1 1—A1
P(11l) = m1——, P(12) = m1——, 25
(111) T B (112) TR (25)
1+ A 1+ A
P(2|1) = mp——, P(2|2) = mp——, 26
(211) T B (22)=mo—¢ (26)

where the parameteis;, A, andB are given by

T, — 7T COSH
A= (1—2f , 27
1= )\/1—4711;12 c02(0/2) @)
7o — 71 COSH
Ao = (1—2f , 28
2= )\/1—47117@ c02(0/2) (28)
B = (1— 2f) AR (29)

V1= 4y, co2(6/2)

which satisfy the relatiorr; A; — 72 A2 = B. The condition that the most likely
state before the guantum measurementis also the most likely state after the quantum
measurement is represented by

mp = me— P(jll) = PKkil) (I1=1,2) (30)

It is found that this condition is equivalent to Eq. (19). Thus, the condition that
guantum measurement is not useful for the discrimination between the quantum
statespi and p> is equivalent to the condition that the most likely state remains
most likely after the quantum measurement.

The quantum states; ‘and p> considered in this section also appears in
the output port of the quantum depolarizing chantfevhen the input states
are|y1) = |0) and [yp) = |0) = cosf/2)|0) + sin@/2)|1), where the quantum
depolarizing channéf is given by

Tp= -+ Pl (0=p=1) (31)

The parametep is related tof in Egs. (13) and (14) by = 2f.
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4. CONCLUDING REMARKS

In this note, we have considered the quantum measurement which discrimi-
nates among quantum states. We have provided another proof of the necessary and
sufficient condition under that quantum measurement is not useful for quantum-
state discrimination, which was initiated by Hunter (Hunter, 2003). Using the two
spin-1/2 states in thermal equilibrium, we have examined the condition.
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